Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Ind Microbiol Biotechnol ; 50(1)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38061800

RESUMO

Secondary metabolites (SMs) are biologically active small molecules, many of which are medically valuable. Fungal genomes contain vast numbers of SM biosynthetic gene clusters (BGCs) with unknown products, suggesting that huge numbers of valuable SMs remain to be discovered. It is challenging, however, to identify SM BGCs, among the millions present in fungi, that produce useful compounds. One solution is resistance gene-guided genome mining, which takes advantage of the fact that some BGCs contain a gene encoding a resistant version of the protein targeted by the compound produced by the BGC. The bioinformatic signature of such BGCs is that they contain an allele of an essential gene with no SM biosynthetic function, and there is a second allele elsewhere in the genome. We have developed a computer-assisted approach to resistance gene-guided genome mining that allows users to query large databases for BGCs that putatively make compounds that have targets of therapeutic interest. Working with the MycoCosm genome database, we have applied this approach to look for SM BGCs that target the proteasome ß6 subunit, the target of the proteasome inhibitor fellutamide B, or HMG-CoA reductase, the target of cholesterol reducing therapeutics such as lovastatin. Our approach proved effective, finding known fellutamide and lovastatin BGCs as well as fellutamide- and lovastatin-related BGCs with variations in the SM genes that suggest they may produce structural variants of fellutamides and lovastatin. Gratifyingly, we also found BGCs that are not closely related to lovastatin BGCs but putatively produce novel HMG-CoA reductase inhibitors. ONE-SENTENCE SUMMARY: A new computer-assisted approach to resistance gene-directed genome mining is reported along with its use to identify fungal biosynthetic gene clusters that putatively produce proteasome and HMG-CoA reductase inhibitors.


Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases , Complexo de Endopeptidases do Proteassoma/genética , Lovastatina/farmacologia , Lovastatina/uso terapêutico , Genoma Fúngico , Biologia Computacional , Hidrocarbonetos
2.
Chem Sci ; 14(40): 11022-11032, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37860661

RESUMO

Aspergillus fumigatus is a serious human pathogen causing life-threatening Aspergillosis in immunocompromised patients. Secondary metabolites (SMs) play an important role in pathogenesis, but the products of many SM biosynthetic gene clusters (BGCs) remain unknown. In this study, we have developed a heterologous expression platform in Aspergillus nidulans, using a newly created genetic dereplication strain, to express a previously unknown BGC from A. fumigatus and determine its products. The BGC produces sartorypyrones, and we have named it the spy BGC. Analysis of targeted gene deletions by HRESIMS, NMR, and microcrystal electron diffraction (MicroED) enabled us to identify 12 products from the spy BGC. Seven of the compounds have not been isolated previously. We also individually expressed the polyketide synthase (PKS) gene spyA and demonstrated that it produces the polyketide triacetic acid lactone (TAL), a potentially important biorenewable platform chemical. Our data have allowed us to propose a biosynthetic pathway for sartorypyrones and related natural products. This work highlights the potential of using the A. nidulans heterologous expression platform to uncover cryptic BGCs from A. fumigatus and other species, despite the complexity of their secondary metabolomes.

3.
Front Cell Dev Biol ; 9: 681734, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34222251

RESUMO

To cause the devastating rice blast disease, the hemibiotrophic fungus Magnaporthe oryzae produces invasive hyphae (IH) that are enclosed in a plant-derived interfacial membrane, known as the extra-invasive hyphal membrane (EIHM), in living rice cells. Little is known about when the EIHM is disrupted and how the disruption contributes to blast disease. Here we show that the disruption of the EIHM correlates with the hyphal growth stage in first-invaded susceptible rice cells. Our approach utilized GFP that was secreted from IH as an EIHM integrity reporter. Secreted GFP (sec-GFP) accumulated in the EIHM compartment but appeared in the host cytoplasm when the integrity of the EIHM was compromised. Live-cell imaging coupled with sec-GFP and various fluorescent reporters revealed that the loss of EIHM integrity preceded shrinkage and eventual rupture of the rice vacuole. The vacuole rupture coincided with host cell death, which was limited to the invaded cell with presumed closure of plasmodesmata. We report that EIHM disruption and host cell death are landmarks that delineate three distinct infection phases (early biotrophic, late biotrophic, and transient necrotrophic phases) within the first-invaded cell before reestablishment of biotrophy in second-invaded cells. M. oryzae effectors exhibited infection phase-specific localizations, including entry of the apoplastic effector Bas4 into the host cytoplasm through the disrupted EIHM during the late biotrophic phase. Understanding how infection phase-specific cellular dynamics are regulated and linked to host susceptibility will offer potential targets that can be exploited to control blast disease.

4.
BMC Cell Biol ; 18(1): 11, 2017 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-28125974

RESUMO

BACKGROUND: To cause an economically important blast disease on rice, the filamentous fungus Magnaporthe oryzae forms a specialized infection structure, called an appressorium, to penetrate host cells. Once inside host cells, the fungus produces a filamentous primary hypha that differentiates into multicellular bulbous invasive hyphae (IH), which are surrounded by a host-derived membrane. These hyphae secrete cytoplasmic effectors that enter host cells presumably via the biotrophic interfacial complex (BIC). The first IH cell, also known as the side BIC-associated cell, is a specialized effector-secreting cell essential for a successful infection. This study aims to determine cellular processes that lead to the development of this effector-secreting first IH cell inside susceptible rice cells. RESULTS: Using live-cell confocal imaging, we determined a series of cellular events by which the appressorium gives rise to the first IH cell in live rice cells. The filamentous primary hypha extended from the appressorium and underwent asymmetric swelling at its apex. The single nucleus in the appressorium divided, and then one nucleus migrated into the swollen apex. Septation occurred in the filamentous region of the primary hypha, establishing the first IH cell. The tip BIC that was initially associated with the primary hypha became the side BIC on the swollen apex prior to nuclear division in the appressorium. The average distance between the early side BIC and the nearest nucleus in the appressorium was estimated to be more than 32 µm. These results suggest an unknown mechanism by which effectors that are expressed in the appressorium are transported through the primary hypha for their secretion into the distantly located BIC. When M. oryzae was inoculated on heat-killed rice cells, penetration proceeded as normal, but there was no differentiation of a bulbous IH cell, suggesting its specialization for establishment of biotrophic infection. CONCLUSIONS: Our studies reveal cellular dynamics associated with the development of the effector-secreting first IH cell. Our data raise new mechanistic questions concerning hyphal differentiation in response to host environmental cues and effector trafficking from the appressorium to the BIC.


Assuntos
Núcleo Celular/metabolismo , Magnaporthe/citologia , Oryza/microbiologia , Células Vegetais/microbiologia , Morte Celular , Divisão do Núcleo Celular , Temperatura Alta , Hifas/citologia , Mitose , Modelos Biológicos
5.
Fungal Genet Biol ; 98: 35-38, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27890626

RESUMO

To investigate the mitotic dynamics of an appressorium, we used live-cell confocal imaging of a fluorescence-based mitotic reporter strain of Magnaporthe oryzae. We present evidence that the M. oryzae appressorium remains viable and mitotically active well after host penetration. These results suggest the potential roles of the appressorium during post-penetration proliferation of invasive hyphae. Our studies also revealed that a mitotic appressorial nucleus undergoes extreme constriction and elongation as it migrates through the penetration peg in a manner analogous to mitosis during cell-to-cell movement of invasive hyphae. Understanding the mechanisms underlying these pathogen-specific nuclear dynamics may provide new targets for disease control.


Assuntos
Proteínas Fúngicas/genética , Hifas/genética , Magnaporthe/genética , Doenças das Plantas/genética , Núcleo Celular , Hifas/crescimento & desenvolvimento , Hifas/patogenicidade , Magnaporthe/crescimento & desenvolvimento , Magnaporthe/patogenicidade , Mitose/genética , Oryza/microbiologia , Doenças das Plantas/microbiologia
6.
Fungal Genet Biol ; 93: 46-9, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27321562

RESUMO

To study nuclear dynamics of Magnaporthe oryzae, we developed a novel mitotic reporter strain with GFP-NLS (localized in nuclei during interphase but in the cytoplasm during mitosis) and H1-tdTomato (localized in nuclei throughout the cell cycle). Time-lapse confocal microscopy of the reporter strain during host cell invasion provided several new insights into nuclear division and migration in M. oryzae: (i) mitosis lasts about 5min; (ii) mitosis is semi-closed; (iii) septal pores are closed during mitosis; and (iv) a nucleus exhibits extreme constriction (approximately from 2µm to 0.5µm), elongation (over 5µm), and long migration (over 16µm). Our observations raise new questions about mechanisms controlling the mitotic dynamics, and the answers to these questions may result in new means to prevent fungal proliferation without negatively affecting the host cell cycle.


Assuntos
Magnaporthe/genética , Mitose/genética , Oryza/microbiologia , Núcleo Celular/genética , Citoplasma/genética , Citoplasma/microbiologia , Magnaporthe/patogenicidade , Doenças das Plantas/genética , Doenças das Plantas/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...